European Zero-Emission Battery Electric Truck Industry: Efficient Battery Manufacturing Processes and Charging Time Demonstrate Potential Reductions in CO2 Emissions per Battery Electric Truck by 30%

DUBLIN, Jan. 30, 2024 /PRNewswire/ — The “Life Cycle CO2 Emissions Assessment on the European Zero-Emission Battery Electric Truck Industry” report has been added to ResearchAndMarkets.com’s offering.

Research and Markets Logo

Electric truck adoption is increasing across geographies. An electric truck is a zero-emission vehicle during operation but while charging, the electricity is generated from sources that emit CO2. Similarly, energy-intensive manufacturing processes of Li-Ion batteries add to the CO2 emission trail of a BEV truck. This research assesses a BEV truck’s total lifecycle CO2 emissions, starting from the mining and extraction of critical battery minerals to energy-intensive battery production processes to the electric vehicle operation within the United States, up until end-of-life recycling and recovery.

The scope of the study covers the complete lifecycle CO2 emission assessment for a battery electric truck operating in Western Europe across light-duty, medium-duty, and heavy-duty truck segments. The results are compared with a diesel truck to gauge the total CO2 emissions of a diesel truck versus a BEV. The study covers vast subjects such as global resources of critical battery minerals, geopolitical challenges, and the electricity generation mix of countries in Western Europe where the truck is assumed to operate.

In conclusion, the results of the comparison of total lifecycle CO2 emissions put to rest questions on whether the battery electric vehicle emission trail is cleaner than that of a diesel truck. The total CO2 emissions in BEV trucks are lesser than that of diesel trucks across the lifecycle by more than 80%.

Key Growth Opportunities

  • Tracking of CO2 Emissions
  • Design and Process Improvement
  •  Vertical Integration and Partnerships

Key Topics Covered:

Growth Environment

  • Life Cycle CO2 Emissions
  • Scope of Analysis
  • Growth Drivers
  • Growth Restraints
  • Methodology

CO2 Emission During Battery Manufacturing

  • EV Li-ion Battery Manufacturing Process
  • Major Steps Involved in EV Li-ion Battery Manufacturing
  • Snapshot of Lithium Mining and Extraction
  • Snapshot of Cobalt Mining and Extraction
  • Snapshot of Nickel Mining and Extraction
  • Snapshot of Graphite Mining and Extraction
  • Snapshot of Refining and Upgrades
  • Active Material Production and Cell Assembly: Process and Energy Demand
  • Snapshot of Battery Gigafactories
  • Snapshot of Coal-based Electricity Generation
  • Primary Impact Factors
  • Impact of CO2 Emissions on Battery Manufacturing Forecast
  • CO2 Emissions in Battery Manufacturing Process
  • CO2 Emission During BEV Usage
  • Use Case and Forecast Assumptions
  • Germany: Electricity Generation by Source and CO2 Impact
  • France: Electricity Generation by Source and CO2 Impact
  • Spain: Electricity Generation by Source and CO2 Impact
  • Germany: Electricity Generation Forecast Scenarios
  • France: Electricity Generation Forecast Scenarios
  • Spain: Electricity Generation Forecast Scenarios

LDT

  • LDT: Operational Characteristics and User Cycle Overview
  • LDT: Snapshot of Cycle A Charging
  • LDT: Cycle A First Life CO2 Emissions
  • LDT: Snapshot of Cycle D Charging
  • LDT: Cycle D First Life CO2 Emissions
  • LDT: Snapshot of Cycle H Charging
  • LDT: Cycle H First Life CO2 Emissions
  • LDT: Cycles A to H CO2 Emissions

MDT

  • MDT: Operational Characteristics and User Cycle Overview
  • MDT: Snapshot of Cycle A Charging
  • MDT: Cycle A First Life CO2 Emissions
  • MDT: Snapshot of Cycle D Charging
  • MDT: Cycle D First Life CO2 Emissions
  • MDT: Snapshot of Cycle H Charging
  • MDT: Cycle H First Life CO2 Emissions
  • MDT: Cycles A to H CO2 Emissions in First Life

HDT

  • HDT: Operational Characteristics and User Cycle
  • HDT: Snapshot of Cycle A Charging
  • HDT: Cycle A First Life CO2 Emissions
  • HDT: Snapshot of Cycle D Charging
  • HDT: Cycle D First Life CO2 Emissions
  • HDT: Snapshot of Cycle H Charging
  • HDT: Cycle H First Life CO2 Emissions
  • HDT: Cycles A to H Total CO2 Emissions in First Life

Conclusion

  • Lifecycle CO2 Emissions Assessment, LDT: Diesel vs. BEV
  • Lifecycle CO2 Emissions Assessment, LDT: Break-even Point
  • Lifecycle CO2 Emissions Assessment, MDT: Diesel vs. BEV
  • Lifecycle CO2 Emissions Assessment, MDT: Break-even Point
  • Lifecycle CO2 Emissions Assessment, HDT: Diesel vs. BEV
  • Lifecycle CO2 Emissions Assessment, HDT: Break-even Point

For more information about this report visit https://www.researchandmarkets.com/r/f9bvvh

About ResearchAndMarkets.com

ResearchAndMarkets.com is the world’s leading source for international market research reports and market data. We provide you with the latest data on international and regional markets, key industries, the top companies, new products and the latest trends.

Media Contact:

Research and Markets

Laura Wood, Senior Manager

[email protected] 

For E.S.T Office Hours Call +1-917-300-0470

For U.S./CAN Toll Free Call +1-800-526-8630

For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1907

Fax (outside U.S.): +353-1-481-1716

Logo: https://mma.prnewswire.com/media/539438/Research_and_Markets_Logo.jpg

Cision View original content:https://www.prnewswire.com/news-releases/european-zero-emission-battery-electric-truck-industry-efficient-battery-manufacturing-processes-and-charging-time-demonstrate-potential-reductions-in-co2-emissions-per-battery-electric-truck-by-30-302047643.html

SOURCE Research and Markets

Featured image: Megapixl © Albertshakirov

Disclaimer